首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   393篇
  免费   21篇
  国内免费   6篇
测绘学   14篇
大气科学   38篇
地球物理   91篇
地质学   152篇
海洋学   35篇
天文学   38篇
综合类   2篇
自然地理   50篇
  2021年   3篇
  2020年   3篇
  2019年   17篇
  2018年   10篇
  2017年   11篇
  2016年   11篇
  2015年   13篇
  2014年   14篇
  2013年   22篇
  2012年   12篇
  2011年   22篇
  2010年   9篇
  2009年   12篇
  2008年   13篇
  2007年   13篇
  2006年   15篇
  2005年   11篇
  2004年   16篇
  2003年   16篇
  2002年   12篇
  2001年   7篇
  2000年   6篇
  1999年   5篇
  1998年   8篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   3篇
  1986年   2篇
  1985年   13篇
  1984年   5篇
  1983年   10篇
  1982年   7篇
  1981年   8篇
  1980年   4篇
  1979年   7篇
  1978年   3篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
  1973年   6篇
  1972年   2篇
  1968年   2篇
  1967年   2篇
排序方式: 共有420条查询结果,搜索用时 31 毫秒
21.
22.
23.
Well-preserved Holocene terraces along the South Fork Payette River in central Idaho provide a record of fluvial system behavior in a steep mountain watershed characterized by weathered and erodible Idaho Batholith granitic rocks. Terrace deposit ages were provided by 14C dating of charcoal fragments and optically stimulated luminescence (OSL) dating of sandy sediments. Along with pairing of many terrace tread heights, these data indicate episodic downcutting during the Holocene, with a mean incision rate of ~0.9 m/ka from ~7 ka to present. Prior to 7 ka, the river incised to within~3 m of current bankfull, but then aggraded by ~5 m over at least a ~10 km-long reach in an episode centered ~7–6 ka. Aggradation may relate to (1) increased hillslope sediment input from landslides and debris flows in steep tributary basins with abundant grussified granitic bedrock, (2) possible local landslide-damming of the channel, (3) decreased peak discharge, or (4) a combination of these factors. Middle Holocene channel aggradation ca. 7–6 ka corresponds with a period of prolonged and widespread aridity in the northern Rocky Mountains. Between ~5 and 1.3 ka, the river aggraded slightly and then remained stable, forming a prominent terrace tread at ~3 m above current bankfull. Modest aggradation to vertical stability of the South Fork Payette River at the 1.5 m terrace level ~1.0–0.7 ka corresponds with large fire-related debris flows in tributaries during Medieval droughts. Three intervals of incision (~5.5–5 ka, 1.3–1.0 ka and 0.5 ka) correspond with frequent but small fire-related sedimentation events and generally cooler, wetter conditions suggesting increased snowmelt runoff discharges. Other possible drivers of channel incision include an increase in stochastic or climate-modulated large storms and floods and a reduction in delivery of hillslope sediment to the channel. Aggradation is more confidently tied to climate through increases in hillslope sediment delivery and (or) decreased stream power, both likely related to warmer, drier conditions (including high-severity fires) that reduce snowmelt and decrease vegetation cover on steep slopes. Thus, the Holocene terraces of the South Fork Payette River do not reflect simple stepwise incision with periods of vertical stability and lateral migration, but record substantial episodes of aggradation as well. We infer that increases in hillslope erosion and mass movements combined with reduced discharges during prolonged droughts episodically reverse the post-glacial trend of downcutting, in particular during the middle Holocene. The present bedrock-dominated channel implies a strong tendency toward incision in the late Holocene.  相似文献   
24.
The Beetaloo Sub-basin, northern Australia, is considered the main depocentre of the 1,000-km scale Mesoproterozoic Wilton package of the greater McArthur Basin – the host to one of the oldest hydrocarbon global resources. The ca. 1.40–1.31 Ga upper Roper Group and the latest Mesoproterozoic to early Neoproterozoic unnamed group of the Beetaloo Sub-basin, together, record ca. 500 million years of depositional history within the North Australia Craton. Whole-rock shale Sm–Nd and Pb isotope data from these sediments reveal sedimentary provenance and their evolution from ca. 1.35 to 0.85 Ga. Furthermore, these data, together with shale major/trace elements data from this study and pyrolysis data from previous publications, are used to develop a dynamic tectonic geography model that links the organic carbon production and burial to an enhanced weathering of nutrients from a large igneous province. The ca. 1.35–1.31 Ga Kyalla Formation of the upper Roper Group is composed of isotopically evolved sedimentary detritus that passes up, into more isotopically juvenile Pb values towards the top of the formation. The increase in juvenile compositions coincides with elevated total organic carbon (TOC) contents of these sediments. The coherently enriched juvenile compositions and TOC the upper portions of the Kyalla Formation are interpreted to reflect an increase in nutrient supply associated with the weathering of basaltic sources (e.g. phosphorous). Possible, relatively juvenile, basaltic sources include the Wankanki Supersuite in the western Musgraves and the Derim Derim–Galiwinku large igneous province (LIP). The transition into juvenile, basaltic sources directly before a supersequence-bounding unconformity is here interpreted to reflect uplift and erosion of the Derim Derim–Galiwinku LIP, rather than an influx of southern Musgrave sources. A new baddeleyite crystallisation age of 1,312.9 ± 0.7 Ma provides both a tight constraint on the age of this LIP, along with its associated magmatic uplift, as well as providing a minimum age constraint for Roper Group deposition. The unconformably overlying lower and upper Jamison sandstones are at least 300 million years younger than the Kyalla Formation and were sourced from the Musgrave Province. An up-section increase in isotopically juvenile compositions seen in these rocks is interpreted to document the progressive exhumation of the western Musgrave Province. The overlying Hayfield mudstone received detritus from both the Musgrave and Arunta regions, and its isotopic geochemistry reveals affinities with other early Neoproterozoic basins (e.g. Amadeus, Victoria and Officer basins), indicating the potential for inter-basin correlations.  相似文献   
25.
The Ediacaran Jibalah Group comprises volcano‐sedimentary successions that filled small fault‐bound basins along the NW–SE‐trending Najd fault system in the eastern Arabian‐Nubian Shield. Like several other Jibalah basins, the Antaq basin contains exquisitely preserved sedimentary structures and felsic tuffs, and hence is an excellent candidate for calibrating late Ediacaran Earth history. Shallow‐marine strata from the upper Jibalah Group (Muraykhah Formation) contain a diversity of load structures and intimately related textured organic (microbial) surfaces, along with a fragment of a structure closely resembling an Ediacaran frond fossil and a possible specimen of Aspidella. Interspersed carbonate beds through the Muraykhah Formation record a positive δ13C shift from ?6 to 0‰. U‐Pb zircon geochronology indicates a maximum depositional age of ~570 Ma for the upper Jibalah Group, consistent with previous age estimates. Although this age overlaps with that of the upper Huqf Supergroup in nearby Oman, these sequences were deposited in contrasting tectonic settings on opposite sides of the final suture of the East African Orogen.  相似文献   
26.
27.
Sea level rise threatens coastal communities throughout the United States, and South Florida is on the front line. The iconic and built-up city of Miami Beach, Florida, has a well-developed, high-value property market, and the municipality has been lauded for proactively taking action to adapt to anticipated sea level rise. Moving beyond hyperbole and piecemeal evidence, we compile a comprehensive inventory of adaptation and mitigation measures implemented by various municipal agencies. We employ these data sets to measure exposure and readiness for the entire city and make a preliminary effort to develop a city vulnerability index. Our findings reveal that exposure throughout the city is high and that readiness is concentrated near stormwater drainage systems, leading to high vulnerability along the coast. When we compare the spatial patterns of the vulnerability index and the residential property values, we find a mismatch. The most vulnerable regions are characterized by high income, transiency, and an apparent unresponsiveness to sea level rise. No doubt our findings illustrate a lag effect, but if sea level rise increases, the real estate market could reach a tipping point unless state and federal agencies also fund more comprehensive adaptation.  相似文献   
28.
29.
Approximately 13 km south of Gulf Shores, Alabama (United States), divers found in situ baldcypress (Taxodium distichum) stumps 18 m below the ocean surface. These trees could have only lived when sea level fell during the Pleistocene subaerially exposing the tectonically stable continental shelf. Here we investigate the geophysical properties along with microfossil and stratigraphical analyses of sediment cores to understand the factors that lead to this wood’s preservation. The stumps are exposed in an elongated depression (~100 m long, ~1 m deep) nested in a trough of the northwest–southeast trending Holocene sand ridges and troughs with 2–5 m vertical relief and ~0.5 km wavelength. Radiocarbon ages of the wood were infinite thus optically stimulated luminescence (OSL) dating was used to constrain the site’s age. Below the Holocene sands (~0.1–4 m thick), separated by a regional erosional unconformity, are Late Pleistocene mud-peat (72±8 ka OSL), mud-sand (63±5, 73±6 ka OSL), and palaeosol (56±5 ka OSL) facies that grade laterally from west to east, respectively. Foraminiferal analysis reveals the location of the terrestrial-marine transitional layer above the Pleistocene facies in an interbedded sand and mud facies (3940±30 (1σ) 14C a BP), which is part of a lower shoreface or marine-dominated estuarine environment. The occurrence of palaeosol and swamp facies of broadly similar ages and elevation suggests the glacial landscape possessed topographic relief that allowed wood, mud and peats to be preserved for ~50 ka of subaerial exposure before transitioning to the modern marine environment. We hypothesize that rapid sea-level rise occurring ~60 or ~40 ka ago provided opportunities for local flood-plain aggradation to bury the swamp thus preserving the stumps and that other sites may exist in the northern Gulf of Mexico shelf.  相似文献   
30.
Abstract

Three arrays of current‐meter moorings were deployed under landfast sea ice in southeast Hudson Bay for eight weeks in spring 1986. Spectral analysis shows low‐frequency signals with periods of 3 to 11 days. These signals are interpreted as being due to coastal‐trapped waves propagating cyclonically in Hudson Bay; their theoretical dispersion relations and corresponding modal structures are presented for winter stratification and are compared with observations. At a period of 3 days both the modified external Kelvin wave and higher mode continental shelf waves may be important in describing the observed low‐frequency variability, whereas at a period of 10 days the Kelvin wave appears to be the dominant mode. The generation mechanisms for these coastal trapped waves are also investigated. Two sources have been studied: the longshore atmospheric pressure gradient and the average atmospheric pressure over the ice cover in Hudson Bay. Coherence and phase analyses performed with time series of longshore current and atmospheric forcing data reveal that both the average atmospheric pressure and the longshore atmospheric pressure gradient are important in explaining the observed low‐frequency variability, without indicating which one is the most important.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号